Chapter 1 – Complex Numbers This means  $\frac{1}{i} = -i$ .  $\sqrt{-1} = i$  or  $i^2 = -1$ . The conjugate of z = a + bi is  $z^* = a - bi$ . The modulus of  $z = |\mathbf{z}| = \sqrt{\mathbf{a}^2 + \mathbf{b}^2}$ .  $|z_1 \times z_2| = |z_1| \times |z_2|$ The argument of  $z = \arg(z) = tan^{-1}(\frac{b}{a})$ . This will give a value between  $-\pi$  and  $\pi$ , you may need to use common sense to change this to give the actual direction required. Quadratics with real coefficients, solutions are either both real or complex conjugates (a + bi and a - bi) Cubics with real coefficients have either 3 real roots, or 1 real root and complex conjugates.

Quartics with real coefficients have either 4 real roots, or 2 real roots and complex conjugates, or 2 complex conjugates.

Chapter 2 – Numerical Solutions

To prove a root exists between two limits, evaluate both limits and comment that the sign has changed.

To get a better approximation for a root, you can either:

(a) Interval Bisection. Find the midpoint, evaluate its value and use the sign to see which side the root now lies.

(b) Linear Interpolation. Draw a diagram, show relevant values and use ratios to get closer to root.

If trying to find f(x) = 0 then  $x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$ (c) Newton-Raphson.

Chapter 3 – Coordinate Systems

To change from parametric to Cartesian, eliminate the parameter and combine x and y into one equation.

|                    | Parabola                  | Rectangular<br>Hyperbola                     |
|--------------------|---------------------------|----------------------------------------------|
| Standard<br>Form   | $y^2 = 4ax$               | $xy = c^2$                                   |
| Parametric<br>Form | ( at <sup>2</sup> , 2at ) | $\left(ct,\frac{c}{t}\right)$                |
| Foci               | ( a , 0 )                 | This table is included in the formulae book. |
| Directrices        | <i>x</i> = - <i>a</i>     |                                              |



Chapter 4 – Matrix Algebra

 $\begin{pmatrix} 5 & 2 & 3 \\ 1 & 0 & 4 \end{pmatrix}$  is a 2 x 3 matrix. The identity matrix is  $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ . The determinant of a matrix  $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$  is ad - bc. The inverse of a matrix  $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$  is  $\frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ . Matrices can be used to represent transformations.

Reflection and rotation are included in the formulae book, look at where the signs are different to decide whether it is a rotation (top right / bottom left) or reflection (top left / bottom right).

AB means matrix B followed by matrix A.

Chapter 5 – Series  $\sum_{r=1}^{n} r = \frac{n}{2}(n+1), \qquad \qquad \sum_{r=1}^{n} 1 = n.$ In the formulae book, we have the following:  $\sum_{r=1}^{n} r^2 = \frac{1}{6}n(n+1)(2n+1), \qquad \qquad \sum_{r=1}^{n} r^3 = \frac{1}{4}n^2(n+1)^2 \qquad = \left(\sum_{r=1}^{n} r\right)^2$ Watch out for:  $\sum_{r=k}^{n} u_r = \sum_{r=1}^{n} u_r - \sum_{r=1}^{k-1} u_r$ 

Chapter 6 – Induction

Your solution must end with the following:

- (i) General statement is correct for n = 1.
- (ii) If statement is correct for n = k, then correct for n = k + 1
- (iii) Hence true for all n.

Trick: If proving divisible by 4, then writing  $5^{n+1}$  as  $4 \times 5^n + 5^n$  might help.

Remember to write down what you are trying to achieve to help you gain the solution.