

# Section 3: Trig graphs, identities and equations

### **Notes and Examples**

In this section you learn how to solve trigonometric equations.

These notes contain subsections on

- Trigonometric identities
- Principal values
- Solving simple trigonometrical equations
- More complicated examples of trigonometrical equations.

### **Trigonometric identities**

You need to learn the following identities:

$$\tan x = \frac{\sin x}{\cos x}$$

$$\sin^2 x + \cos^2 x = 1$$

$$\tan 30^\circ = \frac{\sin 30^\circ}{\cos 30^\circ}$$

An identity is true for all values of x.

You can prove the identities quite easily using a right-angled triangle.



$$\frac{\sin x}{\cos x} = \frac{a}{c} \div \frac{b}{c} = \frac{a}{c} \times \frac{c}{b} = \frac{a}{b} = \tan x$$

$$\sin^2 x + \cos^2 x = \frac{a^2}{b^2} + \frac{b^2}{c^2} = \frac{a^2 + b^2}{c^2} = \frac{c^2}{c^2} = 1$$



In the next example you need to use the trigonometric identities to rewrite an expression.



#### Example 1

Show that  $(\sin \theta + \cos \theta)(\sin \theta - \cos \theta) = 2\sin^2 \theta - 1$ 

#### **Solution**

Working with the LHS and expanding the brackets gives:

Since 
$$\sin^2 \theta + \cos^2 \theta = 1$$
 then  $\cos^2 \theta = 1 - \sin^2 \theta$  ②



Substituting ② into ① gives:

 $(\sin\theta + \cos\theta)(\sin\theta - \cos\theta) = \sin^2\theta - (1-\sin^2\theta)$ 

Simplifying:  $(\sin \theta + \cos \theta)(\sin \theta - \cos \theta) = 2\sin^2 \theta - 1$  as required.

### **Principal values**

There are infinitely many roots to an equation like  $\sin \theta = \frac{1}{2}$ .

Your calculator will only give one solution – the *principal value*. You find this by pressing the calculator keys for sin<sup>-1</sup> 0.5 (or arcsin 0.5 or invsin 0.5). Check that you can get the answer of 30°.

You can find other roots by looking at the symmetry of the appropriate graph.



 $y = \tan \theta$ 







Alternatively, you can use the quadrant diagram to find other solutions, by thinking about which quadrants the solutions will be in.

### Solving simple trigonometrical equations

Because there are infinitely many solutions to a trigonometric equation you are only ever asked to find a few of them! Any question at this level asking you to solve a trigonometric equation will also give you the interval or range of values in which the solutions must lie, e.g. you might be asked to solve  $\tan\theta = 2$  for  $0^{\circ} \le \theta \le 360^{\circ}$ .

You can only directly solve trigonometric equations like  $\sin\theta = \frac{1}{2}$  or  $\cos\theta = \frac{1}{4}$  or  $\tan\theta = -2$ . Here is an example.



#### Example 2

Solve the equations

(i) 
$$\cos x = \frac{\sqrt{3}}{2} \text{ for } 0^{\circ} \le x \le 360^{\circ}.$$

(ii) 
$$\sin x = -0.2$$
 for  $0^{\circ} \le x \le 360^{\circ}$ 



#### **Solution**

(i) cos is positive in the 1<sup>st</sup> and 4<sup>th</sup> quadrants.

$$\cos x = \frac{\sqrt{3}}{2} \Rightarrow x = 30^{\circ}$$

There will be a second solution in the  $4^{th}$  quadrant.  $360^{\circ} - 30^{\circ} = 330^{\circ}$  is also a solution.

So the values of x for which  $\cos x = \frac{\sqrt{3}}{2}$  are 60° and 120°.

(ii) sin is negative in the  $3^{rd}$  quadrant and the  $4^{th}$  quadrant Using a calculator,  $\sin x = -0.2 \Rightarrow x = -11.53^{\circ}$  This is not in the required range.



The solution in the  $3^{rd}$  quadrant is  $180^{\circ} + 11.53^{\circ} = 191.53^{\circ}$ . The solution in the  $4^{th}$  quadrant is  $360^{\circ}$  -  $11.53^{\circ} = 348.47^{\circ}$ So the values of x for which  $\sin x = -0.2$  are 191.53° and 348.47° (2 d.p.)

### More complicated trigonometrical equations

Any more complicated equations need to be manipulated algebraically before they can be solved. There are a number of techniques you can use:

- 1. Rearrange the equation to make  $\cos\theta$ ,  $\sin\theta$  or  $\tan\theta$  the subject.
- 2. Check to see if the equation factorises to give two (or more) equations which involve just one trigonometric function (see Example 3). If it is a quadratic in either  $\sin \theta$ ,  $\cos \theta$ , or  $\tan \theta$  it can either be factorised or solved using the formula for solving quadratic equations (see Example 4).
- 3. If the equation involves just  $\sin \theta$  and  $\cos \theta$  (and no powers), check to see if you can use the identity  $\tan \theta = \frac{\sin \theta}{\cos \theta}$  (see Example 5).
- If the equation contains a mixture of trigonometric functions 4. (e.g.  $\cos^2 \theta$  and  $\sin \theta$ ) then you may need to use the identity  $\sin^2 \theta + \cos^2 \theta = 1$ to make it a quadratic in either  $\sin \theta$ ,  $\cos \theta$ , or  $\tan \theta$ (see Example 6).



#### Example 3

Solve  $2\cos\theta\sin\theta + \cos\theta = 0$  for  $0^{\circ} \le \theta \le 360^{\circ}$ .

#### Solution

 $2\cos\theta\sin\theta + \cos\theta = 0$  can be factorised as there is  $\cos\theta$  in both terms on the LHS.

Factorise:  $\cos\theta(2\sin\theta+1)=0$ 

So either  $\cos \theta = 0$  or  $2\sin \theta + 1 = 0$ 

 $\cos \theta = 0 \Rightarrow \theta = 90^{\circ}$  $360^{\circ} - 90^{\circ} = 270^{\circ}$  is also a solution.

 $2\sin\theta + 1 = 0 \Rightarrow \sin\theta = -\frac{1}{2}$ 

This has solutions in the third and fourth quadrants.

The solutions are  $180^{\circ} + 30^{\circ} = 210^{\circ}$  and  $360^{\circ} - 30^{\circ} = 330^{\circ}$ .

So the values of  $\theta$  for which  $2\cos\theta\sin\theta + \cos\theta = 0$  are 90°, 210°, 270° and 330°. In Example 4 you need to solve a quadratic equation.



### Example 4

Solve  $2\cos^2\theta + 3\cos\theta = 2 \operatorname{for} 0^\circ \le \theta \le 360^\circ$ .

**Solution** 



You can replace  $\cos \theta$  with x to make things simpler! Or factorise straightaway to get:  $(2\cos\theta - 1)(\cos\theta + 2) = 0$ and then solve.

11/06/13 © MEJ

It is wrong to divide through by  $\cos\theta$  because you lose the solutions to

 $\cos\theta = 0$ .



 $2\cos^2\theta + 3\cos\theta = 2$  is a quadratic equation in  $\cos\theta$ 

Rearrange the quadratic:  $2\cos^2\theta + 3\cos\theta - 2 = 0$ 

Let  $\cos \theta = x$ :  $2x^2 + 3x - 2 = 0$ 

Factorise: (2x-1)(x+2) = 0

$$x = \frac{1}{2}$$
 or  $x = -2 \implies \cos \theta = \frac{1}{2}$  or  $\cos \theta = -2$ 

 $\cos \theta = -2$  has no solutions.

So we need to solve  $\cos \theta = \frac{1}{2}$ 

$$\Rightarrow$$
 cos  $\theta$  = 60°

There is also a solution in the  $4^{th}$  quadrant, so  $360^{\circ}$  -  $60^{\circ}$  =  $300^{\circ}$  is also a solution.

So the values of  $\theta$  for which  $2\cos^2\theta + 3\cos\theta = 2$  are  $60^\circ$  and  $300^\circ$ .

In the next example you need to use the identity  $\tan \theta = \frac{\sin \theta}{\cos \theta}$ 



### Example 5

Solve 
$$\sin \theta - 2\cos \theta = 0$$
 for  $0^{\circ} \le \theta \le 360^{\circ}$ .

#### **Solution**

You need to rearrange the equation.

$$\sin\theta - 2\cos\theta = 0$$

Dividing by 
$$\cos \theta$$
.

Since 
$$\tan \theta = \frac{\sin \theta}{\theta}$$
:  $\tan \theta - 2 = 0$ 

$$\cos \theta \Rightarrow \tan \theta = 2$$

$$\Rightarrow \theta = 63.4^{\circ} \text{ to 1 d.p.}$$

There is also a solution in the  $3^{rd}$  quadrant. So  $63.4^{\circ} + 180^{\circ} = 243.4^{\circ}$  is also a solution.

1

value of  $\theta$ .

You can safely divide by  $\cos \theta$ 

because it can't be equal to 0. If it were then  $\sin \theta$  would also have to be 0 and  $\cos \theta$  and  $\sin \theta$ 

 $\theta$  are never both 0 for the same

So the values of  $\theta$  for which  $\sin \theta - 2\cos \theta = 0$  are 63.4° and 243.4° to 1 d.p.

In the next example you need to use the trigonometric identity  $\sin^2 \theta + \cos^2 \theta \equiv 1$ .



### Example 6

Solve 
$$\sin^2 x + \sin x = \cos^2 x$$
 for  $0^\circ \le x \le 360^\circ$ 



# Solution

Rearranging the identity 
$$\sin^2 \theta + \cos^2 \theta = 1$$
  
gives:  $\cos^2 x = 1 - \sin^2 x$ 

Substituting ① into the equation  $\sin^2 x + \sin x = \cos^2 x$  gives:



 $\sin^2 x + \sin x = 1 - \sin^2 x$ 

This is a quadratic in  $\sin x$ .

Rearranging:  $2\sin^2 x + \sin x - 1 = 0$ Rearranging:  $2\sin^2 x + \sin x - 1 = 0$ This factorises to give:  $(2\sin x - 1)(\sin x + 1) = 0$ 

So either:  $2\sin x - 1 = 0$  or  $\sin x + 1 = 0$ 

 $\Rightarrow \sin x = \frac{1}{2}$   $\Rightarrow x = 30^{\circ} \text{ or } 150^{\circ}$   $\Rightarrow x = 270^{\circ}$ 

So the solutions to  $\sin^2 x + \sin x = \cos^2 x$  are  $x = 30^\circ, 150^\circ$  or  $270^\circ$ 



6 of 6