

Maths skills

1 Measurements

Practice questions

1

Physical quantity	Equation used to derive unit	Unit	Symbol and name (if there is one)
frequency	period ⁻¹	s⁻¹	Hz, hertz
volume	length ³	m ³	_
density	mass ÷ volume	kg m ⁻³	_
acceleration	velocity ÷ time	m s⁻²	_
force	mass × acceleration	kg m s ⁻²	N newton
work and energy	force × distance	N m (or kg m² s⁻²)	J joule

- **2 a** 19 m **b** 21 s **c** 1.7 × 10⁻²⁷ kg **d** 5.0 s
- **3** Resistance $=\frac{12 \text{ V}}{1.8 \text{ mA}} = \frac{12 \text{ V}}{0.0018 \text{ A}} = 6666.666...\Omega = 6.66666...k\Omega = 6.67\Omega$
- **4 a** 5.7 cm ± 2% **b** 450 kg ± 0.4%
- **c** 10.6 s \pm 0.5% **d** 366 000 J \pm 0.3%
- **5 a** 1200 ± 120 W **b** $330\ 000 \pm 1650$ Ω
- 6 D 1400 ± 5 mm (Did you calculate them all? The same absolute error means the percentage error will be smallest in the largest measurement, so no need to calculate.)

2 Standard form and prefixes

Practice questions

- 1
 a 1.35×10³ W (or 1.350 × 10³ W to 4 s.f.)
 b 1.3×10⁵ Pa

 c 6.96×10⁸ s
 d 1.76×10¹¹ C kg⁻¹
- **2 a** 2 260 000 J in 1 kg, so there will be 1000 times fewer J in 1 g: $\frac{2260\ 000}{1000} = 2260\ J/g$

b 1 kJ = 1000 J, 2 260 000 J/kg = $\frac{2260\ 000}{1000}$ kJ/kg = 2260 kJ/kg c 1 MJ = 1000 kJ, so 2260 kJ/kg = $\frac{2260}{1000}$ MJ/kg = 2.26 MJ/kg 3 a 2.5×10⁻³ m b 1.60×10⁻¹⁵ m c 1×10⁻⁸ J d 5×10³ m e 6.2 × 10⁻¹ N 4 a 2.5 µm b 1.60 f m c 10 nJ or 0.01 µJ d 5 km © Oxford University Press 2019 This resource sheet may have been changed from the original. Oxford A Level Sciences

e 0.62 N or 62 cN

- 6 a 64000000 or 6.4 × 10⁷ b 99.99 c 800 d 10³
- 7 **a** 3.0×10^8 m s⁻¹ ÷ 3.03×10^{-7} m = 1.0×10^{15} Hz **b** 3.0×10^8 m s⁻¹ ÷ 1000 m = 3.0×10^5 Hz **c** 3.0×10^8 m s⁻¹ ÷ 1.0×10^{-10} m = 3.0×10^{18} Hz

3 Resolving vectors

Practice questions

1 Scalars: density, electric charge, electrical resistance, energy, frequency, mass, power, temperature, voltage, volume, work done

Vectors: field strength, force, friction, momentum, weight

- 2 Scalars: 3 ms⁻¹, 50 km, 273 °C, 50 kg, 3 A
 Vectors: +20 ms⁻¹, 100 m NE, −5 cm, 10 km S 30°W, 3 × 10⁸ m/s upwards
- 3 13 kN
- 4 Free body force diagram:

Triangle of forces:

6

5

 ${\ensuremath{\mathbb C}}$ Oxford University Press 2019 \quad This resource sheet may have been changed from the original.

AQA Physics

7 a 5.0 N at 37° to the 4.0 N force

b 13 N at 23° to the 12.0 N force

4 Rearranging equations

Practice questions

- 1 V = 12 V and I = 0.25 A V = IR so $12 = 0.25 \times R$ $R = \frac{V}{I} = \frac{12}{0.25} = 48 \Omega$ 2 $\lambda = 650$ nm $= 650 \times 10^{-9}$ m and $v = 3.0 \times 10^{8}$ m/s
- $v = f\lambda \text{ so } 3.0 \times 10^8 = f \times 650 \times 10^{-9}$ $f = \frac{v}{\lambda} = \frac{3.0 \times 10^8}{650 \times 10^{-9}} = 0.00462 \times 10^{17} = 4.62 \times 10^{14} \text{ Hz}$
- 3 $E = 4.01 \times 10^4$ J and m = 0.120 g = 0.120 kg E = mL so $4.01 \times 10^4 = 0.120 \times L$ $L = \frac{E}{m} = \frac{4.01 \times 10^4}{0.120} = 334$ 166 J/kg = 3.34×10^5 J/kg in standard form

5 Work done, power, and efficiency

Practice questions

- 1 $22 \times 10^{3} \text{ N} \times 2 \times 10^{3} \text{ m} = 44\ 000\ 000 \text{ J} = 44 \text{ MJ}$ 2 $\frac{62.5 \times 10^{3} \text{ J}}{500 \text{ N}} = 125 \text{ m}$ 3 $\frac{260\ 000 \text{ N} \times 25 \text{ m}}{48 \text{ s}} = 13\ 541.6 \text{ W} = 14\ 000 \text{ W} \text{ or } 14 \text{ kW} (2 \text{ s.f.})$ 4 $\frac{2500 \text{ N} \times 15 \text{ m}}{5 \text{ s}} = 7500 \text{ W} = 7.5 \text{ kW}$ 5 $\frac{8400}{11200} \times 100 = 75\%$ 6 $\frac{850}{1.2 \times 10^{3}} \times 100 = 71\%$ 7 $\frac{7.5}{8.0} \times 100 = 94\%$
- **8** 0.74 s